

# Adjustable Limiting Orifice Valves

Series "ALO"



Eclipse Adjustable Limiting Orifice Valves are recommended for installation in gas lines feeding nozzle mix burners as a means of gas flow adjustment for the desired air / gas ratio. The unique V-port design allows for extremely fine ratio adjustment.

Adjustable Limiting Orifice Valves are available in five sizes from 3/4" to 2". Capacities when using natural gas range from 195cfh to 16,900 cfh depending on valve size and pressure drop taken (see Capacity Table). Maximum inlet pressure is 40 psi.

Valve adjustment is readily accomplished by removing the cap and turning the stem assembly clockwise for reduced flow and counterclockwise for increased flow. Once adjustment has been made, replace the cap to prevent tampering with the adjustment and to protect the threads of the packing nut.

"ALO" Valves are designed for use as limiting orifices and should not be used as a substitute for a normal shut off valve. They should be preceded in the gas line by a suitable manual shut off valve such as a lubricated plug cock. For a right angle version of the Adjustable Limiting Orifice Valve, series "ALO-R", see Bulletin 728.

### **Capacities**

(CFH of 0.65 SG. Gas\*)

| Catalog                                   | Pipe                                 | Flow Coeff.<br>(C <sub>V</sub> ) Full Open | Inches W.C. Drop**               |                                   |                                    |                                    |                                    |                                     | PSIG Drop**                         |                                      |                                       |                                       |                                       |                                       |
|-------------------------------------------|--------------------------------------|--------------------------------------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Number                                    |                                      |                                            | .5                               | 1.5                               | 3.5                                | 5.0                                | 7.0                                | 8.5                                 | 10.0                                | 1.0                                  | 2.0                                   | 3.0                                   | 4.0                                   | 5.0                                   |
| ALO-3<br>ALO-4<br>ALO-5<br>ALO-6<br>ALO-8 | 3/4"<br>1"<br>1-1/4"<br>1-1/2"<br>2" | 4.88<br>6.52<br>12.81<br>14.56<br>25.60    | 195<br>261<br>512<br>583<br>1025 | 356<br>476<br>935<br>1062<br>1870 | 504<br>674<br>1321<br>1505<br>2505 | 617<br>809<br>1620<br>1842<br>3070 | 715<br>955<br>1873<br>2130<br>3555 | 786<br>1062<br>2085<br>2375<br>3960 | 874<br>1170<br>2285<br>2610<br>4350 | 1435<br>1920<br>3770<br>4280<br>7530 | 2040<br>2720<br>5350<br>6070<br>10700 | 2500<br>3345<br>6560<br>7450<br>13100 | 2885<br>3860<br>7580<br>8610<br>15120 | 3220<br>4320<br>8460<br>9600<br>16900 |

<sup>\*</sup>When using other than natural gas, apply multifactor to above capacities

| Gas—Sp. Gr. | 0.4  | 0.6  | 0.8   | 1.0  | 1.5   | 2.0   |  |
|-------------|------|------|-------|------|-------|-------|--|
| Multifactor | 1.22 | 1.00 | 0.866 | 0.77 | 0.632 | 0.547 |  |

<sup>\*\*</sup>Above capacities assume a secondary pressure of atmospheric to 1/2 psi. For other pressures use the following equations for gases or for liquids near the viscosity of water.

FOR GAS: 
$$Q = 1360 C_v \frac{\sqrt{(P_1-P_2) P_2}}{\sqrt{GT}}$$

Q = SCFH

 $C_V = Flow Factor$ 

P<sub>1</sub> = Inlet Pressure PSIA

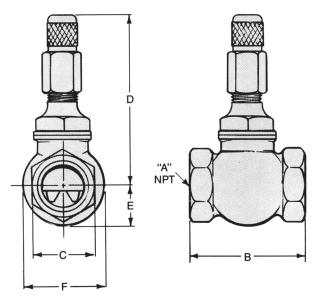
P<sub>2</sub> = Outlet Pressure PSIA

G = Specific Gravity of gas

T = Flowing temperature absolute ° F.

FOR LIQUIDS: 
$$Q = C_V \sqrt{\frac{\triangle P}{S.G}}$$

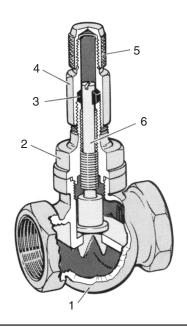
Q = Flow in G.P.M.


 $C_V$  = Flow factor

 $\triangle P$  = Pressure differential

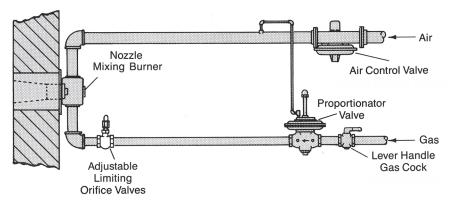
S.G. = Specific Gravity of liquid




### **Dimensions**



| Catalog                                   | Part<br>Number                                 | Dimensions                      |                                             |                                       |                                         |                                          |                                       |  |  |
|-------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|--|--|
| Number                                    |                                                | Α                               | В                                           | С                                     | D                                       | E                                        | F                                     |  |  |
| ALO-3<br>ALO-4<br>ALO-5<br>ALO-6<br>ALO-8 | 500605<br>500606<br>500607<br>500608<br>500609 | 3/4<br>1<br>1-1/4<br>1-1/2<br>2 | 2-17/32<br>2-7/8<br>3-5/8<br>3-3/4<br>4-1/4 | 1-3/8<br>1-5/8<br>2<br>2-1/4<br>2-3/4 | 3-15/16<br>3-3/4<br>4-5/8<br>5<br>5-7/8 | 7/8<br>1-1/16<br>1-1/4<br>1-1/2<br>1-7/8 | 1-3/4<br>2-1/8<br>2-1/2<br>3<br>3-3/4 |  |  |


NOTE: All dimensions are in inches.

## **Parts List**



| Item | tem                           |   | Part Numbers |         |         |         |         |  |  |
|------|-------------------------------|---|--------------|---------|---------|---------|---------|--|--|
| No.  | No. Description               |   | ALO-3        | ALO-4   | ALO-5   | ALO-6   | ALO-8   |  |  |
| 1    | Body, Globe Valve             | 1 | 4395-11      | 4396-11 | 4397-11 | 4398-11 | 4399-11 |  |  |
| 2    | Bonnet, Brass                 | 1 | 4161-11      | 4162-11 | 4163-11 | 4164-11 | 4165-11 |  |  |
| 3    | Packing                       | 1 | 10004        | 10004   | 10006   | 10006   | 10014   |  |  |
| 4    | Nut, Packing, Brass B-16 H.H. | 1 | 19914        | 19914   | 19934   | 19934   | 19935   |  |  |
| 5    | Cap, Brass B-16 H.H.          | 1 | 19938        | 19938   | 10000   | 10000   | 10000   |  |  |
| 6    | Stem Assembly                 | 1 | 500610       | 500611  | 500612  | 500613  | 500614  |  |  |

# **TypicalApplication**





**Eclipse Combustion** 



Offered By:
Power Equipment Company
2011 Williamsburg Road
Richmond, Virginia 23231
Phone (804) 236-3800 Fax (804) 236-3882